Credit hours: 4(3+1) # Mandsaur University, Mandsaur (M.P.) Faculty of Agriculture Sciences Distribution of course curriculum for B.Sc. Agriculture Degree Programme # As per Recommendation 5th Dean Committee #### **Semester wise:** # B.Sc. (Hons.) Ag. Ist Year # Semester wise distribution of courses | I semester | | | | |---|--|-------------------|------------------------| | S.N. | Name of subject | Subject code (MU) | Credit | | 1 | Fundamentals of Agronomy | AGR010 | 4(3+1) | | 2 | Introductory Biology* / Elementary Mathematics* | RIB010 / REM010 | 2(1+1)/
2(2+0)* | | 3 | Fundamentals of Soil Science | SAC010 | 3(2+1) | | 4 | Introduction to Forestry | BPF010 | 2 (1+1) | | 5 | Fundamentals of Plant Biochemistry and Biotechnology | BPM010 | 3(2+1) | | 6 | Fundamentals of Horticulture | HRT010 | 2(1+1) | | 7 | Agriculture Heritage* | RAH010 | 1(1+0)* | | 8 | Rural Sociology & Educational Psychology | EXT020 | 2 (2+0) | | 9 | NSS/NCC/Physical Education & Yoga Practices** | PED010 | 2(0+2)** | | 10 | Human Values & Ethics (non gradial)** | HVE010 | 1(1+0)** | | 11 | Comprehension & Communication Skills in English | CSE010 | 2 (1+1) | | TOTAL*R: Remedial course; **NC: Non-gradial courses | | | 22(15+7) /
02*+02** | | | | | | # **SYLLABUS** [As per Recommendation 5th Dean Committee] # B.Sc. (Hons.) Ag. Ist Year Ist Semester ### **Fundamentals of Agronomy (AGR010):** **Theory:** Agronomy and its scope, seeds and sowing, tillage and tilth, crop density and geometry, Crop nutrition, manures and fertilizers, nutrient use efficiency, water resources, soil plant water relationship, crop water requirement, water use efficiency, irrigation- scheduling criteria and methods, quality of irrigation water, water logging. Weeds- importance, classification, crop weed competition, concepts of weed management-principles and methods, herbicides- classification, selectivity and resistance, allelopathy. Growth and development of crops, factors affecting growth and development, plant ideotypes, crop rotation and its principles, adaptation and distribution of crops, crop management technologies in problematic areas, harvesting and threshing of crops. **Practical:** Identification of crops, seeds, fertilizers, pesticides and tillage implements, Effect of sowing depth on germination and seedling vigour, Identification of weeds in crops, Methods of herbicide and fertilizer application, Study of yield contributing characters and yield estimation, Seed germination and viability test, Numerical exercises on fertilizer requirement, plant population, herbicides and water requirement, Use of tillage implements-reversible plough, one way plough, harrow, leveler, seed drill, Study of soil moisture measuring devices, Measurement of field capacity, bulk density and infiltration rate, Measurement of irrigation water. Credit hours: 3(2+1) Credit hours: 2(1+1)* Credit hours: 2(2+0)* #### **Fundamentals of Soil Science (SAC010):** **Theory:** Soil as a natural body, Pedological and edaphological concepts of soil; Soil genesis: soil forming rocks and minerals; weathering, processes and factors of soil formation; Soil Profile, components of soil; Soil physical properties: soil-texture, structure, density and porosity, soil colour, consistence and plasticity; Elementary knowledge of soil taxonomy classification and soils of India; Soil water retention, movement and availability; soil air, composition, gaseous exchange, problem and plant growth; source, amount and flow of heat in soil; soil temperature and plant growth; Soil reaction-pH, soil acidity and alkalinity, buffering, effect of pH on nutrient availability; soil colloids - inorganic and organic; silicate clays: constitution and properties; sources of charge ion exchange, cation exchange capacity, base saturation; soil organic matter: composition, properties and its influence on soil properties; humic substances - nature and properties; soil organisms: macro and micro organisms, their beneficial and harmful effects; Soil pollution - behaviour of pesticides and inorganic contaminants, prevention and mitigation of soil pollution. **Practical:** Study of soil profile in field. Study of soil sampling tools, collection of representative soil sample, its processing and storage. Study of soil forming rocks and minerals. Determination of soil density, moisture content and porosity. Determination of soil texture by feel and Bouyoucos Methods. Studies of capillary rise phenomenon of water in soil column and water movement in soil. Determination of soil pH and electrical conductivity. Determination of cation exchange capacity of soil. Study of soil map. Determination of soil colour. Demonstration of heat transfer in soil. Estimation of organic matter content of soil. ### **Introductory Biology (New) (RIB010):** **Theory:** Introduction to the living world, diversity and characteristics of life, origin of life, Evolution and Eugenics. Binomial nomenclature and classification Cell and cell division. Morphology of flowing plants. Seed and seed germination. Plant systematic- viz; Brassicaceae, Fabaceae and Poaceae. Role of animals in agriculture. **Practical:** Morphology of flowering plants – root, stem and leaf and their modifications. Inflorence, flower and fruits. Cell, tissues & cell division. Internal structure of root, stem and leaf. Study of specimens and slides. Description of plants - Brassicaceae, Fabaceae and Poaceae. OR ## **Elementary Mathematics (New) (REM010):** **Theory:** Straight lines: Distance formula, section formula (internal and external division), Change of axes (only origin changed), Equation of co-ordinate axes, Equation of lines parallel to axes, Slope-intercept form of equation of line, Slope-point form of equation of line, Two point form of equation of line, Intercept form of equation of line, Normal form of equation of line, General form of equation of line, Point of intersection of two st. lines, Angles between two st. lines, Parallel lines, Perpendicular lines, Angle of bisectors between two lines, Area of triangle and quadrilateral. Circle: Equation of circle whose centre and radius is known, General equation of a circle, Equation of circle passing through three given points, Equation of circle whose diameters is line joining two points (x_1, y_1) & (x_2, y_2) , Tangent and Normal to a given circle at given point (Simple problems), Condition of tangency of a line y = mx + c to the given circle $x^2 + y^2 = a^2$. Differential Calculus: Definition of function, limit and continuity, Simple problems on limit, Simple problems on continuity, Differentiation of x^n , e^x , $\sin x$ & $\cos x$ from first principle, Derivatives of sum, difference, product and quotient of two functions, Differentiation of functions of functions (Simple problem based on it), Logarithmic differentiation (Simple problem based on it), Differentiation by substitution method and simple problems based on it, Differentiation of Inverse Trigonometric functions. Maxima and Minima of the functions of the form y=f(x) (Simple problems based on it). Credit hours: (1+1) Credit hours: 2(2+0) Credit hours: 2(1+1) Credit hours: 1(1+0) **Integral Calculus**: Integration of simple functions, Integration of Product of two functions, Integration by substitution method, Definite Integral (simple problems based on it), Area under simple well-known curves (simple problems based on it). **Matrices and Determinants**: Definition of Matrices, Addition, Subtraction, Multiplication, Transpose and Inverse up to 3rd order, Properties of determinants up to 3rd order and their evaluation. #### **Introduction to Forestry (New (BPF010):** **Theory:** Introduction – definitions of basic terms related to forestry, objectives of silviculture, forest classification, salient features of Indian Forest Policies. Forest regeneration, Natural regeneration - natural regeneration from seed and vegetative parts, coppicing, pollarding, root suckers; Artificial regeneration – objectives, choice between natural and artificial regeneration, essential preliminary considerations. Crown classification. Tending operations – weeding, cleaning, thinning – mechanical, ordinary, crown and advance thinning. Forest mensuration – objectives, diameter measurement, instruments used in diameter measurement; Non instrumental methods of height measurement - shadow and single pole method; Instrumental methods of height measurement - geometric and trigonometric principles, instruments used in height measurement; tree stem form, form factor, form quotient, measurement of volume of felled and standing trees, age determination of trees. Agroforestry – definitions, importance, criteria of selection of trees in agroforestry, different agroforestry systems prevalent in the country, shifting cultivation, taungya, alley cropping, wind breaks and shelter belts, home gardens. Cultivation practices of two important fast growing tree species of the region. **Practical:** Identification of tree-species. Diameter measurements using calipers and tape, diameter measurements of forked, buttressed, fluted and leaning trees. Height measurement of standing trees by shadow method, single pole method and hypsometer. Volume measurement of logs using various formulae. Nursery lay out, seed sowing, vegetative propagation techniques. Forest plantations and their management. Visits of nearby forest based industries. #### Rural Sociology & Educational Psychology (EXT020): **Theory:** Sociology and Rural sociology: Definition and scope, its significance in agriculture extension, Rural society, Social Groups, Social Stratification, Culture concept, Social Institution, Social Change & Development. Educational psychology: Meaning & its importance in agriculture extension. Behavior: Cognitive, affective, psychomotor domain, Personality, Learning, Motivation, Theories of Motivation, Intelligence. # Fundamentals of Horticulture (NEW) (HRT010): **Theory:** Horticulture-Its definition and branches, importance and scope; horticultural and botanical classification; climate and soil for horticultural crops; Plant propagation-methods and propagating structures; principles of orchard establishment; Principles and methods of training and pruning, juvenility and flower bud differentiation; unfruitfulness; pollination, pollinizers and pollinators; fertilization and parthenocarpy; kitchen gardening; garden types and parts; lawn making; medicinal and aromatic plants; species and condiments; use of plant bio-regulators in horticulture. Irrigation & fertilizers application-method and quantity. **Practical:** Identification of garden tools. Identification of horticultural crops. Preparation of seed bed/nursery bed. Practice of sexual and asexual methods of propagation. Layout and planting of orchard plants. Training and pruning of fruit trees. Transplanting and care of vegetable seedlings. Making of herbaceous and shrubbery borders. Preparation of potting mixture, potting and repotting. Fertilizer application in different crops. Visits to commercial nurseries/orchard. # Agriculture Heritage (New Course) (RAH010)*: **Theory:** Introduction of Indian agricultural heritage, status of farmers in society; advice by sages to kings on their duties towards farmers, soil management in ancient, medieval & pre-modern India and its relevance in modern day sustainable agriculture, heritage of crop & water management, plant growth and development & plant protection through vrikshayurveda and traditional knowledge. Heritage of medicinal Credit hours: 1(1+0) plants and their relevance today, seed health in ancient & medieval history and its relevance to present day agriculture, description of Indian civilization and agriculture by travelers from China, Europe and United States, our journey in agriculture, green revolution and its impact and concerns, vision for the future. # NSS/NCC/Physical Education & Yoga Practices (PED010)** Credit hours: 2(0+2) **Theory:** Course aims at evoking social consciousness among students through various activities viz., working together, constructive and creative social work, to be skilful in executing democratic leadership, developing skill in programme development to be able for self employment, reducing gap between educated and uneducated, increasing awareness and desire to help sections of society. ### Following activities are to be taken up under the NSS course: * Introduction and basic components of NSS: Orientation, *NSS programmes and activities, *Understanding youth, *Community mobilization, *Social harmony and national integration, *Volunteerism and shramdan, *Citizenship, constitution and human rights, *Family and society, *Importance and role of youth leadership, *Life competencies, *Youth development programmes, * Health, hygiene and sanitation, *Youth health, lifestyle, HIV AIDS and first aid, *Youth and yoga, *Vocational skill development, *Issues related environment, *Disaster management, *Entrepreneurship development, * Formulation of production oriented project, * Documentation and data reporting, * Resource mobilization, *Additional life skills, * Activities directed by the Central and State Government All the activities related to the National Service Scheme course is distributed under four different courses viz., National Service Scheme I, National Service Scheme III and National Service Scheme IV each having one credit load. The entire four courses should be offered continuously for two years. A student enrolled in NSS course should put in at least 60 hours of social work in different activities in a semester other than five regular one day camp in a year and one special camp for duration of 7 days at any semester break period in the two year. Different activities will include orientation lectures and practical works. Activities directed by the Central and State Government have to be performed by all the volunteers of NSS as per direction. #### **Human Value and Ethics**** (HVE010): **Theory:** Values and Ethics-An Introduction. Goal and Mission of Life. Vision of Life. Principles and Philosophy. Self Exploration. Self Awareness. Self Satisfaction. Decision Making. Motivation. Sensitivity. Success. Selfless Service. Case Study of Ethical Lives. Positive Spirit. Body, Mind and Soul. Attachment and Detachment. Spirituality Quotient. Examination. #### Comprehension and Communication Skills in English (CSE010): Credit hours: 2(1+1) **Theory:** War Minus Shooting- The sporting Spirit. A Dilemma- A layman looks at science Raymond B. Fosdick. You and Your English – Spoken English and broken English G.B. Shaw. Reading Comprehension, Vocabulary- Antonym, Synonym, Homophones, Homonyms, often confused words. Exercises to Help the students in the enrichment of vocabulary based on TOEFL and other competitive examinations. Functional grammar: Articles, Prepositions, Verb, Subject verb Agreement, Transformation, Synthesis, Direct and Indirect Narration. Written Skills: Paragraph writing, Precise writing, Report writing and Proposal writing. The Style: Importance of professional writing. Preparation of Curriculum Vitae and Job applications. Synopsis Writing. Interviews: kinds, Importance and process. **Practical:** Listening Comprehension: Listening to short talks lectures, speeches (scientific, commercial and general in nature). Oral Communication: Phonetics, stress and intonation, Conversation practice. Conversation: rate of speech, clarity of voice, speaking and Listening, politeness & Reading skills: reading dialogues, rapid reading, intensive reading, improving reading skills. Mock Interviews: testing initiative, team spirit, leadership, intellectual ability. Group Discussions. ## Fundamentals of Plant Biochemistry and Biotechnology (BPM010): Credit hours: 3(2+1) **Theory:** Importance of Biochemistry. Properties of Water, pH and Buffer. Carbohydrate: Importance and classification. Structures of Monosaccharides, Reducing and oxidizing properties of Monosaccharides, Mutarotation; Structure of Disaccharides and Polysaccharides. Lipid: Importance and classification; Structures and properties of fatty acids; storage lipids and membrane lipids. Proteins: Importance of proteins and classification; Structures, titration and zwitterions nature of amino acids; Structural organization of proteins. Enzymes: General properties; Classification; Mechanism of action; Michaelis & Menten and Line Weaver Burk equation & plots; Introduction to allosteric enzymes. Nucleic acids: Importance and classification; Structure of Nucleotides, A, B & Z DNA; RNA: Types and Secondary & Tertiary structure. Metabolism of carbohydrates: Glycolysis, TCA cycle, Glyoxylate cycle, Electron transport chain. Metabolism of lipids: Beta oxidation, Biosynthesis of fatty acids. Concepts and applications of plant biotechnology: Scope, organ culture, embryo culture, cell suspension culture, callus culture, anther culture, pollen culture and ovule culture and their applications; Micropropagation methods; organogenesis and embryogenesis, Synthetic seeds and their significance; Embryo rescue and its significance; somatic hybridization and cybrids; Somaclonal variation and its use in crop improvement; cryo-preservation; Introduction to recombinant DNA methods: physical (Gene gun method), chemical (PEG mediated) and Agrobacterium mediated gene transfer methods; Transgenics and its importance in crop improvement; PCR techniques and its applications; RFLP, RAPD, SSR; Marker Assisted Breeding in crop improvement; Biotechnology regulations. **Practical:** Preparation of solution, pH & buffers, Qualitative tests of carbohydrates and amino acids. Quantitative estimation of glucose/ proteins. Titration methods for estimation of amino acids/lipids, Effect of pH, temperature and substrate concentration on enzyme action, Paper chromatography/ TLC demonstration for separation of amino acids/ Monosaccharides. Sterilization techniques. Composition of various tissue culture media and preparation of stock solutions for MS nutrient medium. Callus induction from various explants. Micro-propagation, hardening and acclimatization. Demonstration on isolation of DNA. Demonstration of gel electrophoresis techniques and DNA finger printing.